
Quantum Field Theory

Set 4

Appetizer: Matrix elements

Compute ⟨0|Aµ(x)|ϵ(k⃗)⟩ and ⟨0|Fµν(x)|ϵ(k⃗)⟩ where |ϵ(k⃗)⟩ = ϵµ(k⃗)a†µ(k)|0⟩ is a one-photon state. What is the
physical interpretation of these matrix elements ?

Exercise 1: Transformation properties of transverse photons

The polarization of a photon of momentum kµ is defined by the four vector εµ satisfying εµk
µ = 0. In the Coulomb

gauge we instead use the transverse polarization ε⊥µ = (0, ε⃗⊥).

• Check that the conditions ε⊥0 = 0 and ε⊥i k
i = 0 are not Lorentz invariant, which is to say, given a generic

polarization vector ε⊥µ satisfying them, the Lorentz transform ε′⊥ν = Λ ν
µ ε⊥ν has in general ε′

⊥
0 ̸= 0 and

ε′
⊥
i k

′i ̸= 0, where k′µ = Λµ
νk

ν .

• Show that it is still possible to find a vector ε̃⊥µ = ε′
⊥
µ +αk′µ, i.e. equal to ε′

⊥
µ up to a longitudinal component

(which is to say, up to a gauge transformation), which satisfies ε̃⊥0 = 0 and ε̃⊥i k
′i = 0.

• Now, working with helicity eigenstates ε±(k), defined such that exp(−iJ · n̂ϕ)ε±(k) = e∓iϕε±(k), where
n̂ = k/|k|, prove that their Lorentz transform will take the following form:

Λµ
ν ε

ν
±(k) = e∓iϕ(Λ,k)

(
εµ±(Λk) +

∓α(Λ, k)− iβ(Λ, k)√
2ω

(Λk)µ
)
,

where α(Λ, k) and β(Λ, k) will be functions of the specific Lorentz transform. This shows again that the
polarization vectors are not covariant.

Hint : it might be useful to define the following projector onto longitudinal components

Pµν
L =

kµk̄ν + kν k̄µ

k · k̄
, k̄µ = (k0,−ki).

Hint 2 : For the third question, it might be useful to express the polarization in a reference frame εµ±(k) =
Λµ
k ν ε

ν
±(k̄), where k̄µ = (ω, 0, 0, ω). Moreover, it should also be useful to recall that any element of the group

ISO(2) can be expressed as W (α, β, ϕ) = S(α, β)R(ϕ), where R is a rotation and S can be expressed as:

S(α, β) =


1
2 (α

2 + β2) −β α − 1
2 (α

2 + β2)
−β 1 0 β
α 0 1 −α

1
2 (α
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 . (1)

Exercise 2: Equivalence of Hamiltonian and Lagrangian formalism for massive vectors

Consider the Lagrangian of a massive vector field. Compute the conjugate momenta of Aµ and show that Π0 = 0.
This means that A0 is not a dynamical variable but can be expressed in terms of the other fields. Show that
A0 = − 1

M2 ∂iΠ
i. Then show that the Hamiltonian is:

H =

∫
d3x

(
1

2
ΠiΠi +

1

2M2
(∂iΠ

i)2 +
1

4
F ijF ij +

1

2
M2AiAi

)
.



Using the following commutation relations[
Ai(x⃗, t), Π

j(y⃗, t)
]
= iδji δ

3(x⃗− y⃗),

[Ai(x⃗, t), Aj(y⃗, t)] =
[
Πi(x⃗, t), Πj(y⃗, t)

]
=

[
A0(x⃗, t), Π

j(y⃗, t)
]
= 0,

[Ai(x⃗, t), A0(y⃗, t)] = − 1

M2
[Ai(x⃗, t), ∂mΠm(y⃗, t)] =

i

M2
∂
(x)
i δ3(x⃗− y⃗),

show that the Hamilton equations of motion are equivalent to the Lagrange equations of motion.

Homework

Consider the Gupta-Bleuler Lagrangian:

LGB = −1

2
(∂µAν)(∂

µAν).

• Compute the angular momentum
M ij = J ij + Sij ,

where we separated the orbital and angular part as usual:

J ij =

∫
d3xJ0ij(x), Sij =

∫
d3xS0ij(x),

Jµρσ(x) = xρTµσ − xσTµρ, Sµρσ = i
∂L

∂∂µAν
(J ρσ)

γ
ν Aγ .

• By working with the algebra of the ladder operators, show that M ij is a physical observable in the sense
that:

[L,M ij ] ∝ L.

where L ≡ ∂µA−
µ . Does this happen also for J ij and Sij separatly? In other words, is it true that both the

orbital and spin angular momentum are physical (measurable) separatly, i.e. [L, J ij ] ∝ L and [L, Sij ] ∝ L?
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